Searching for ‘real’ Hottentots: the Khoekhoe in the history of South African physical anthropology

Alan G. Morris
Department of Human Biology, University of Cape Town, Observatory, 7925 South Africa; Alan.Morris@uct.ac.za

ABSTRACT
Physical anthropology was obsessed with types and racial purity for an exceptionally long time, only breaking through the clouds of typology in the 1960s and 1970s. For at least a hundred years, research on the Khoekhoe peoples of southern Africa was directed by the idea of Hamitic origins for these pastoralists, and the dynamics and variation of the native populations were ignored so that individuals that fit the preconceived appearance of the mythical Hamite could be identified. The three-race model (Bushman, Hottentot and Bantu) held sway until Singer’s 1958 publication of The Boskop ‘race’ problem in which he criticized the type concept. Only after that seminal paper did population models begin to be considered in the study of aboriginal populations in South Africa. Here, I examine the important philosophical shift from ‘types’ to ‘populations’ in our understanding of the physical anthropology of the Khoekhoe. For many new researchers in the field, the earlier literature must seem exceptionally alien with all of its talk of types, bloodlines and physical features treated as if they were genetic alleles. How much information from the earlier studies can be salvaged?

KEY WORDS: Khoekhoe phenotypes, Khoekhoe genotypes, history of physical anthropology, racial typology.

HAMITES AND THE AGE OF TYPOLOGY
The Khoekhoe, or the ‘Hottentots’ as they were then known, were of great interest to the visiting Europeans at the Cape right from first contact. The distinct cultural and physical differences between the Cape Khoekhoe and the Europeans triggered discussions as to why the differences should exist, but in a context that was essentially pre-scientific. Although many of the early observers were well educated, their views were a mix of uncritical speculation and settler myth. ‘Civilized’ people were above nature, while the ‘primitives’ in the colony were members of the animal kingdom to be classified and listed amongst the weird and wonderful fauna of distant lands (Morris 1996). Peter Kolb (1731), amongst others for example, speculated that the flat nasal bones of the Khoekhoe were the result of the mothers crushing their babies’ nasal bridges just after birth for aesthetic reasons; he also professed an interest in the peculiar sexual anatomy of Khoekhoe women, especially their elongated labia. Kolb briefly discussed the idea that weights were attached to the labia of women in order increase the length of the appendage, again assuming that peculiar ‘primitive’ behaviours were linked in some way to the difference in physical features between the Khoekhoe and the Europeans.

Not all of the early colonial observers were as uncritical as Kolb and as the eighteenth century drew to a close there were more systematic observers. Dr William Somerville, the British supervisor of lands and forests during the first British occupation of the Cape, wrote a brief account of The structure of Hottentot women and illustrated that same structure in anatomical detail (Bradlow & Bradlow 1979; Singer 1978). After the Cape returned to Dutch rule in 1803, one of its first educated visitors was Dr Hinrich Lichtenstein who arrived along with the new governor. Lichtenstein was part of the growing European fraternity of professional scientists who collected human skeletal
material for European museums. His South African harvest included the cranium of a Khoekhoe woman taken from her body during a judicial examination in the Karoo in August 1805 (Lichtenstein 1928–29). Although hardly scientific in today’s sense, the examination of this woman was the first true forensic examination that we have on record in South Africa. More scientifically oriented visitors arrived in southern Africa during the second half of the nineteenth century and they also provided descriptions of Khoekhoe people.

The notion of a career scientist employed by a university started to take hold in earnest from the 1830s throughout Europe. Whereas previously most science was either published privately or through the auspices of one of the Royal Societies, professional journals in specific subject areas were becoming common by the middle 1800s and race and racial ethnology were developing as distinct subjects of research in the new field of anthropology. Typical of these early career scientists was Francis Galton, the first cousin of Charles Darwin. Although he was wealthy enough not to require a university post, his interests were focused on science as a profession. He arrived in Damaraland in 1851 and was immediately impressed by the steatopygia he saw in Khoekhoe women, but was not in a position to make direct measurements of this phenomenon. He solved the problem by using his sextant, a tape measure and trigonometry (Galton 1889: 53–4).

I profess to be a scientific man, and was exceedingly anxious to obtain accurate measurements of her shape. The object of my admiration stood under a tree, and was turning herself about to all points of the compass, [as] ladies who wish to be admired usually do. Of a sudden my eye fell upon my sextant; the bright thought struck me, and I took a series of observations upon her figure in every direction, up and down, crossways, diagonally, and so forth, and I registered them carefully upon an outline drawing for fear of any mistake; this being done, I boldly pulled out my measuring-tape, and measured the distance from where I was to the place she stood, and having thus obtained both base and angles, I worked out the results by trigonometry and logarithms.

Despite their scientific veneer, most of these early researchers were collectors of curiosities rather than explorers of nature. Their approach was little different from that of their zoological and botanical colleagues who spent their time collecting type specimens of new species. The British colonial government encouraged this approach at the launch of the South African Philosophical Society in 1877 by emphasizing the need to study native groups before they disappeared (Tobias 1985), but the real tide of academic science did not reach these shores until the turn of the twentieth century with the launch of the South African Association for the Advancement of Science and the rise of the first South African universities.

In 1902, the South African Association for the Advancement of Science was started, with one of its major objectives to unify ‘Brit and Boer’ (Morris 2002). The organizers wanted it to be a unified body in which discussion about the scientific advancement of the colonies could be discussed. One of their decisions was that they would have an early joint meeting with the British Association so that the South African Association could have a solid launch. In 1905 the British Association came to South Africa. Over 400 overseas delegates came on a specially chartered vessel, mostly from Britain but including a scattering of scientists from Canada, the United States, Germany, Austria, France and Japan. From the British perspective, this was an opportunity to show the colonies how research was done. Two of the people who came with them were Alfred Haddon of Cambridge and Felix von Luschan, who was at that stage curator at the
Museum für Völkerkunde in Berlin. These two were the leading European anthropologists of their day.

Haddon gave a lecture on the state of anthropology in the colonies, in which he criticized the museums for having unsystematic collections. He implored the researchers to study first those aspects which were being lost, especially in physiology and psychology, and especially of the Khoesan peoples. Haddon’s plea echoed the perceived need to use anthropological data to train administrators and he stressed that good administrators of colonies needed to understand the native peoples that they governed (Morris 2002). Von Luschan, on the other hand, was genuinely interested in getting joint research going. In particular, he linked with Louis Peringuey, who was curator of anthropology at the South African Museum in Cape Town. Von Luschan convinced Peringuey to begin a programme of making casts of native peoples including the Khoekhoe. The first cast was made in Cape Town by Von Luschan, but Peringuey felt that his taxidermist Drury could do a better job and set him on a casting project that lasted until the 1920s and yielded 60 or more body casts (Davison 1993; Summers 1975).

Von Luschan used his papers to present his pre-formed ideas about the peopling of southern Africa. In particular, he pushed the Hamitic theory for the origin of the Khoekhoe. He used physical, cultural and linguistic evidence to identify the fundamental separation of the Khoekhoe and the San (Von Luschan 1907). Like Haddon, he spoke of the need for research into the psychological characteristics of the people. Von Luschan strongly supported the link between behaviour and race, and one of his strongest reasons for separating the San from the Khoekhoe was the ‘fact’ that the Khoekhoe were shepherds with a Hamitic ancestry. He supported a model originally proposed by the linguists that the Khoekhoe were Hamites who had moved down from northeast Africa and were changed culturally and physically by interbreeding with the San. Von Luschan’s Hamitic hypothesis influenced many of the next generation of German and South African researchers, but surprisingly had only a limited effect on Peringuey at the South African Museum.

At nearly the same time that Von Luschan began publishing his Hamitic hypothesis, Peringuey had begun his most intense period of gathering skeletons through his network of amateur collectors and by sending Drury out to excavate in prehistoric cave sites and to exhume the graves of known individuals of ‘pure race’ (Legassick & Rassool 2000; Morris 1992b). This large collection of skeletons suggested an alternative model of Khoekhoe origins. Peringuey was influenced by an English anthropologist named Frank Shrubsole, who had published an article in 1898 using 24 Khoesan skulls that he had accessed in British collections. Shrubsole suggested a classification of ‘Bushmen, Hottentots and Strandlopers’ in which he did not see a Hamitic influence. His proposed model considered the origin of the Khoekhoe as being influenced by Bantu-speaking people, not Hamites. Shrubsole thought that ‘Hottentots’ show many ‘Negro’ features and at most he acknowledged only some minor influence from Hamitic peoples.

By collaborating with Peringuey, Shrubsole (1907, 1911, 1922) was able to augment his sample with archaeological specimens from South African institutions. The total sample in his 1922 report included 217 individuals that he subdivided into ‘Hottentots’, ‘Kalahari Bushmen’, ‘Colonial Bushmen’ and ‘Strandlopers’ excavated from caves and middens along the South African coast, all based on Peringuey’s assessment of context
(Peringuey 1911: 191). Unfortunately we have no real idea how Peringuey identified his Khoekhoe skeletons. Perhaps the information came from farmers who in turn had heard that the skeletons were from ‘old Hottentot graves’, but once Peringuey had labelled them as Khoekhoe, they were locked into the accession register as such.

Peringuey then contacted Eugene Pittard at Geneva to continue these studies, and he sent the entire collection of skeletons from the museum to Geneva where they stayed for ten years between 1925 and 1935. The result is that the largest list of publications on the physical anthropology of Khoesan people is in French out of Geneva. There were over 40 papers published between 1925 and 1946, all based on the skeletal data from the skeletons sent to Geneva by Peringuey, and all utilized the four categories from Shrubsall and Peringuey (Morris 1992a).

Dubow (1995) has emphasized that physical anthropology took the lead in the study of South African prehistory after 1905 and this ushered in an ‘age of typology’ with a range of investigators describing a tangled web of types based on archaeological and modern skeletons of South Africans (Morris 2005a; Morris & Tobias 1997). The key to the complexity was the concept of a fixed racial type for each distinct population. Typology was at the heart of physical anthropology and this resulted in a new and more directed phase of research with a focus on racial studies (Dubow 1995) in which both Von Luschan’s Hamitic model and Shrubsall’s Bantu model took centre stage.

The advent of typology on the South African scene was most evident after the discovery of the Boskop skull in 1913. This mineralized partial cranium was assumed to be of great antiquity and its large size, associated with what were seen as San features, suggested that it was different from previously described human crania and living southern African peoples. Although the skull was discovered in Potchefstroom, it became the focus of a ‘territorial’ spat between Peringuey in Cape Town and F.W. FitzSimons at the Port Elizabeth Museum. The two museum directors were trying to get as many skeletons of native peoples into their collections as they could; the digging was literally done with shovels and context was rarely recorded. Peringuey and FitzSimons both offered cash to purchase the Boskop skull. FitzSimons offered the most money, so the skull went to Port Elizabeth, but Peringuey met with FitzSimons and negotiated for the first description to be done by the assistant director of the South African Museum, the young geologist Sydney Haughton (Haughton 1917).

Boskop was an influential find largely because of the notoriety created by the competition between Peringuey and FitzSimons. It was interesting in anatomy, but undated and with very little known about its archaeological context. Its assumed antiquity made it important to the museums. When FitzSimons discovered similar large, long-headed crania in the deeper levels from caves in the Tsitsikamma Mountains on the south Cape coast, he sent them for analysis to Raymond Dart, the new professor of anatomy at the University of the Witwatersrand. The Boskop-like features of these few individuals suggested to Dart that a whole population of large-headed San must have existed in prehistoric times. Dart created the ‘Boskop type’ to represent this population (Dart 1923).

By the 1920s and early 1930s South African physical anthropology had already divided itself into distinct schools in Johannesburg, Cape Town and Bloemfontein. Dart’s enthusiasm for typological studies of crania infected his colleagues and students at the Department of Anatomy at the University of the Witwatersrand, and Lawrence Wells
and Alexander Galloway became converts to the Boskop type. The extension of an extinct race into the present was completed when Dart identified Boskop ancestry in a group of San from the northern borders of the Cape Province in the Kalahari Gemsbok Park (Dart 1937). Dart assessed each individual according to his or her percentage ‘Bushman’ or ‘Boskop’ ancestry. Features that fitted neither of these preconceptions were said to be signs of intermixture from Bantu-speaking, Mediterranean (Hamitic), Armenian or Mongoloid peoples. Dart’s racial explanation was a direct reflection of his cultural diffusionist beliefs (Dart 1939). He interpreted each physical feature as if it were a cultural artefact passed genetically from ‘hand to hand’ by a flow of visitors. The Khoekhoe were drawn into this mix when Galloway began the detailed analysis of the human skeletons from Mapungubwe in 1935 and Bambandyanalo several years later. His report later published as his DSc thesis (Galloway 1959) emphasized Boskop-like features on the crania and this, along with Gardner’s link of the pottery to North African styles, firmly identified the inhabitants as Khoekhoe rather than Bantu-speaking African people (Gardner 1949, 1963). Perhaps the most bizarre of Dart’s typological papers discussing Khoekhoe individuals was the one published in 1952 entitled A Hottentot from Hong Kong in which he compared African archaeological skeletons to skeletons of south Chinese individuals excavated from the old mine compounds of Johannesburg.

The passion for types was just as strong in the Department of Anatomy at the University of Cape Town (Morris 2005a). Although Matthew Drennan did not publish any specific papers on the Khoekhoe, his colleague J.A. Keen worked through the now substantial skeleton collections at UCT and the South African Museum to identify a Khoekhoe ‘Hamitic’ morphology (Keen 1947, 1952). Keen took his lead from the third school of physical anthropology in South Africa, that at the National Museum in Bloemfontein. T.F. Dreyer and his junior colleague A.J.D. Meiring from the museum in Bloemfontein proposed that the living Khoekhoe were descendants of Hamitic migrants from the north, and they set about proving this by excavating a series of graves from along the banks of the Orange River near the town of Kakamas (Dreyer & Meiring 1937).

Their model was based on the then newly published journal of Wikar (Mossop 1935), who had travelled the region of the middle Orange in 1775 and seen his ‘first real Hottentots’ there. Dreyer and his team of labourers dug up in three weeks over 100 graves that they categorized according to the style of the cairn. High, conical cairns were said to be a sign of ‘undegenerated Hottentot culture’ imported from the north, and therefore the individuals buried in these graves were said to be pure Khoekhoe: “It must be borne in mind that individuals of pure race may continue to bury in the old, typical way even after hybrids have abandoned the ancestral methods in favour of more slothful and slovenly ways of interment” (Dreyer & Meiring 1937: 82). A typologically selected set of five crania became the ‘Kakamas type’, and this formed the basis for their expectation of what the North African Hamitic ancestor should look like. When some of their ideas were criticized by Broom and Wells, they accused these foreign-born researchers of not understanding the term ‘Hottentot’ in the same manner as “used by South Africans born in the country” (Dreyer & Meiring 1952: 19).

Robert Broom did not subscribe to any of the schools and essentially worked alone throughout his career. He applied the same typological methods he used in his studies
of mammal-like reptiles to his studies of humans. He searched for racial ‘essences’ on the crania of his archaeological skeletons and tried to reconstruct past racial history from these features. He added a new and fundamentally more ancient type than ‘Bush’ or ‘Boskop’ by introducing his Australoid Koranas (Broom 1929, 1941). Broom hypothesized that the robust features he saw in the living Korana were the last remnants of a very ancient genetic strain akin to the Australian aboriginals who had lived in Africa as part of a world-wide primitive race in ancient times and whose features could still be found amongst the Khoekhoe. Broom could therefore characterize any individual as possessing percentage ancestry according to genetic lines of ‘Australoid’, ‘Negroid’, ‘Bush’ or ‘Boskop’, giving him a typological model almost as complex as that of Dart.

In a summary paper on the origin of the Khoekhoe written in 1955, Phillip Tobias tried to create some order out of the profusion of physical types. He identified no less than eight genetic lines crossing and combining to produce the living Khoesan and the Bantu-speaking peoples of southern Africa (Fig. 1). Although Tobias accepted the various types listed by previous workers, it was clear that he struggled to make sense of the confusion and this was nearly the last of his published papers that accepted the typological model without criticism.

GENOTYPES, PHENOTYPES AND LIVING ‘HOTTENTOTS’

South African medical researchers began to focus on blood types in the 1920s and by the 1950s and 1960s significant data were available on the distribution of the ABO blood group system in South African peoples (Tobias 1966). The Khoekhoe were seen to be distinctive in the ABO blood group system because they had very high rates of B, and relatively low rates of A, whereas the San groups had very high rates of A and low rates of B (Singer et al. 1963; Zoutendyk et al. 1965). A high frequency of B is also

Fig. 1. Chart of human types forming South African peoples (after Tobias 1955).
found in North Africa, so these researchers briefly considered the possibility of the B allele arising from a non-African source, but in the end did not invoke the Hamitic hypothesis to explain their data and instead accepted the idea that gene flow from Bantu-speaking people was the most likely cause of the high B frequency. An environmental cause was also suggested by research that smallpox differentially killed people of blood groups A and AB (Vogel & Chakravartti 1966) and that the known smallpox epidemics that hit the Khoekhoe in the eighteenth century may have resulted in the high frequency of B individuals amongst the survivors. What had happened between the early 1950s and the late 1960s that had caused such different interpretations of biological data? Tobias (1974: 4) expressed it thus:

The new approach stresses rather the environmental or selective pressures which have led populations to diverge in genetic compositions. It is concerned with the adaptive benefits, the usefulness, the survival value, the selective advantage or disadvantage, of a particular gene or set of genes. Thus, it sees man in his environment, physical, biotic, social.

Although researchers remained interested in the differences between people, the focus had now shifted to the ‘process’ of change rather than the ‘description’ of variation. Most important was the concept of human adaptability (Morris 2005a). In contrast to the old typological beliefs, the new physical anthropology recognized that populations change over time and are highly adaptable in both physiology and anatomy. Two things are required for studies with this kind of focus: large, representative sample sizes and an understanding of genetics.

The real break with the typological system in South Africa is marked by the publication of Ronald Singer’s paper on *The Boskop ‘race’ problem* in 1958. His paper rejected the mythical ‘Boskop’ race and suggested instead that the various types created by Dart, Dreyer, Broom and others, were just part of the range of normal variation seen in Khoesan and Negro populations. Tobias was thinking along the same lines and his first real break with typology came with the publication of *The meaning of race* in 1961. The common factor shared by Tobias and Singer was a background in genetics, a subject not well understood by the physical anthropologists of the 1930s and 1940s. Both Singer and Tobias had been exposed to the dynamics of living populations and had had opportunities to gather data on large populations in the field. For Tobias this had occurred in 1952 when he joined the Rene Panhard Expedition to the Kalahari. For Singer it was when he helped to gather serological data on the Malagasy in Madagascar in 1954.

One of the developments in this broader approach was the creation of the Witwatersrand Kalahari Research Committee in 1956 under the chairmanship of Tobias. With typology excluded as the method of analysis, these field trips produced a wealth of studies including physiology, psychology, dental studies, serology and anthropometry (Morris & Tobias 1997; Tobias 1970, 1975). The holistic programme of the Kalahari Research Committee was used as a model in the design of the Human Adaptability Branch of the International Biological Programme in 1968. The idea was to look at humans in their environmental context, and the result was a wealth of studies of local populations including the Khoekhoe. Many of these were innovative studies working with growth and physiology (Krut & Singer 1963; Singer 1970; Singer & Kimura 1981a, 1981b, 1986; Singer *et al.* 1980; Weiner *et al.* 1964), while others extended the knowledge of serogenetics in the years before direct DNA mapping was possible (Barnicot *et al.* 1959; Heltne & Singer 1971; Jenkins *et al.* 1970, 1978; Nurse *et al.* 1978).
Perhaps the most important paper indicating the shift in vision from the typological assessment of the Khoekhoe to a more population-based one is the 1963 work by Singer and Weiner. Originally presented at a symposium on the biology of modern populations in Chicago in 1962, the paper is a brief summary of the biological differences and similarities between ‘Bushmen’, ‘Hottentots’ and ‘Bantu’. A special focus was on the origin of the Khoekhoe, and the authors dealt in particular with the set of serogenetic data that was still new at the time. In particular, the authors rejected a non-African origin for the Khoekhoe and suggested that it was unnecessary to look beyond the African context to understand the biological history of the region. Writing in 1978, Singer (1978: 119) accepted the differences between Khoekhoe and San as “what one expects in populations that derive from common ancestral stocks and that, after periods of separation and isolation, come together at various times to remingle their genes”.

Tobias (1972) mined a similar vein in his address to the Royal Society of South Africa which he began by admitting that his own work in the late 1950s had been amongst the last of the research influenced by the now outmoded typological approach and that a new way of thinking had begun to emerge that he referred to as the biological approach to populations. Like Singer and Weiner before him, he recognized the essential African origin of all Khoesan and Negro people, but suggested that the Khoesan morphology was more extreme in value than other African populations and that differences between Khoekhoe and San should be seen in the light of population separation over time.

A special symposium of the Royal Society of South Africa was held in June 1971 to examine the vexed problem of the meaning of identities in southern Africa. They proposed that biology, language and economy were things that needed to be studied independently and that the same people could have different identities in each of those three categories (Jenkins & Tobias 1977). Such an approach, separating ‘Hottentot’ language from Khoesan biology and pastoral economy, was the antithesis of the old typological models where the underlying assumption was that biology dictated all else. The separation of categories allowed for a much fuller understanding of dynamics of populations and the nature of relationships between different groups of people.

NEW DIRECTIONS

Although the serogenetics work in the 1960s and 1970s has brought us a large amount of understanding of genes in populations, the real breakthrough was in the 1980s when it first became possible to compare DNA between individuals directly. Himla Soodyall and Trefor Jenkins have been at the forefront of this approach and there is no doubt that their work is beginning to explain the patterns of genetic differences in Khoesan populations and Khoekhoe groups in particular (Soodyall & Jenkins 1997). Mitochondrial DNA variations amongst the Khoesan have been shown to be the most deeply rooted of all living African variants studied and the broad outline of Khoesan origins and their great antiquity in the region is now clear (Knight et al. 2003; Soodyall 2002) but we still need clarity on the genetic differences between Khoekhoe and San groups and the timing of their differentiation. This will be one of the research thrusts of the future but it is beyond the scope of this paper.

Today, DNA studies have taken over the study of population origin, but we still have much to learn from studying the morphology of the people themselves. It is important
to remember that DNA studies and osteological studies are not equivalent, and often give us very different pictures of our prehistory because they are not within the same realm of biological variation (Morris 2005b). But the osteological studies have one feature that puts them into a completely different category from the DNA studies. They actually sample the past. The old bones that are the objects of the analysis do not represent the person from the past; they are part of that person, and therefore have a rich potential for information about the life and death of that individual. Hence the continuing need to study archaeological skeletons alongside the genetic studies of the living.

Whereas it is possible to draw relatively large samples of living peoples for genetic studies, work on skeletons is limited by the availability of specimens. Starting in the 1960s there was an attempt to generate samples of skeletons on the basis of ‘known in life identity’ (Morris 1986, 1987). The archaeological or historical context was used to identify individuals according to the communities from which they came and not by biological category. Much of this was triggered by W.W. Howells who came through South Africa in 1964 and 1965 gathering data for his worldwide compendium on human cranial variation (Howells 1973). Stern and Singer in 1967 debated the difficulty in identifying individuals who could be said to be ‘Bushmen’ or ‘Hottentots’ and lamented that the sample of Khoekhoe who were ‘known in life’ was dreadfully small. Alice Hausman (1982) tried to follow this up by looking at samples drawn from different ecological regions (actually reminiscent of Peringuey’s geographic categories from the turn of the century), but her work was still plagued by the problem of identity of Khoekhoe skeletons (Morris 1986).

One problem of this work was that it still posed questions in a format that required clear ethnic identities. While the historians and archaeologists were proposing models of population movements and replacements that needed to be tested, the physical anthropologists were asking questions that were more appropriate in a typological mode. My catalogue of Holocene skeletons (Morris 1992b) was an attempt to break away from this ethnic and racial trap. It invited the testing of archaeological hypotheses by listing over 2500 Holocene skeletons with temporal, geographic and burial context. The idea was to provide a database from which new hypotheses could be tested. Nowhere in the entire catalogue are any skeletons listed with specific identities of Khoekhoe or San or Negro or with any other ethno-racial tag. The idea was to let the hypothesis be generated by the geographic distribution and the archaeology of the skeletons. One of the inspirations for the catalogue was an underrated Masters thesis by Frank Silberbauer in 1979 who examined skeletons that were drawn from different burial patterns in the Eastern Cape. He used ethnographic information that identified burials in the open with large cairns as belonging to pastoralists, while burials in caves or found as isolated unmarked graves in shell middens were of foragers. His analysis of dietary biochemistry of human bone produced isotopic signatures that showed his hypothesis to be correct.

The catalogue of Holocene skeletons is now being used by researchers specifically to test hypotheses that are generated by the samples. Pfeiffer and Sealy and their students have looked at stature and body build along with dietary differences in biochemistry over time and place during the Holocene (Sealy 2006; Sealy & Pfeiffer 2000; Stock & Pfeiffer 2004). Unfortunately the most recent osteological studies have not involved Khoekhoe populations. Deano Stynder (2006) has used morphometrics to see how the morphology patterned over time during the Later Stone Age, but he has not included
samples more recent than 2000 years ago. The reason why these studies have avoided skeletons in the last 2000 years is because they have wanted to avoid the hunter-herder debate and concentrate on a single economic mode. In addition there are very few dated skeletons from within the last 2000 years, but the number is increasing. Morris et al. (2004–05) have suggested that two individuals from Voëlvlei dated to about 700 years ago show isotopic, statural and cultural patterns that indicate a Khoekhoe identity. There are now about 20 skeletons from this time period and it may be possible to begin looking at them for trends over time and signs of population change.

How much of the old data can we salvage? Simply, if it is population-based, then it will still be valid, but if the data have been collected from typologically selected individuals, then the data must go into the archive of the history of science. What we have learned over the last century of study of the biology of the Khoekhoe is that human biological history is about dynamics. The people we study, whether the studies involve DNA from living individuals or bones from the long dead, need to be understood as members of self-defined and local communities and not representatives of observer-generated races. Identity is part of this complexity, with socio-cultural and biological identities weaving a complex fabric that is not necessarily the same at different points of history.

ACKNOWLEDGMENTS

I would like to thank the organizers of the Khoekhoe Workshop for bringing together the disparate disciplines and giving us the opportunity to share our thoughts.

REFERENCES

